Effect of albumin on phenytoin and tolbutamide metabolism in human liver microsomes: an impact more than protein binding.
نویسندگان
چکیده
The cytochrome P450 (P450)-dependent conversion of phenytoin (PHT) to p-hydroxy phenytoin (pHPPH), and tolbutamide (TLB) to 4-hydroxy tolbutamide (hydroxy-TLB), in human liver microsomes was studied in the presence of increasing concentrations (0-4%) of bovine serum albumin (BSA). Therefore, the free fraction (f(u)) of PHT and TLB varied. Whereas the f(u) of PHT (5 microM) decreased, an increase (3-fold), rather than a decrease in the pHPPH formation rate was observed when BSA (<1%) was present. The stimulation was attributed to a significant decrease in apparent K(m). The change, however, was diminished as the BSA concentration reached 4% (PHT f(u) = 0.2), in which the reaction velocity remained the same as that measured in the absence of BSA. Therefore, unchanged K(m) (16.2 +/- 0.7 microM) and V(max) (9.4 +/- 0.2 pmol/min/mg of protein) values were determined based on total PHT concentrations, whereas correction for f(u) led to an unbound K(m) (K(mu)) of approximately 3.2 microM. Similarly, the metabolism of TLB (50 microM) was enhanced (approximately 2-fold) in the presence of 0.25% BSA but remained only 35% of the control activity (no BSA) at 1% BSA. However, the remaining activity was higher (3-fold) than that determined with an equivalent free concentration of TLB (4 microM) calculated according to its f(u) (0.08). The difference became less significant when BSA concentration was 4% (f(u) < 0.02). Collectively, the results suggest a 2-fold effect of BSA on PHT and TLB hydroxylation: first, facilitation of the reactions via a decrease in K(m); second, a decrease in f(u) leading to a drop in reaction rate. For a given P450 reaction, therefore, the effect of BSA may depend upon enzyme affinity, catalytic capacity, and the extent of protein binding.
منابع مشابه
Lansoprazole enantiomer activates human liver microsomal CYP2C9 catalytic activity in a stereospecific and substrate-specific manner.
We recently proposed a possible stereoselective activation by lansoprazole of CYP2C9-catalyzed tolbutamide hydroxylation, as well as stereoselective inhibition of several cytochrome P450 (P450) isoforms. This study evaluated the effects of lansoprazole enantiomers on CYP2C9 activity in vitro, using several probe substrates. For tolbutamide 4-methylhydroxylation and phenytoin 4-hydroxylation, R-...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملSubstrate-dependent effect of acetonitrile on human liver microsomal cytochrome P450 2C9 (CYP2C9) activity.
Acetonitrile is an organic solvent commonly used to increase the solubility of lipophilic substrates for in vitro studies. In this study, we examined its effect on four reactions (diclofenac hydroxylation, tolbutamide methyl hydroxylation, phenytoin hydroxylation, and celecoxib methyl hydroxylation) catalyzed by human liver microsomes and by the recombinant CYP2C9. In both cases, the effect of ...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملNonspecific binding of drugs to human liver microsomes.
AIMS To characterize the nonspecific binding to human liver microsomes of drugs with varying physicochemical characteristics, and to develop a model for the effect of nonspecific binding on the in vitro kinetics of drug metabolism enzymes. METHODS The extent of nonspecific binding to human liver microsomes of the acidic drugs caffeine, naproxen, tolbutamide and phenytoin, and of the basic dru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2002